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RNA sequencing is an increasingly popular technology for genome-wide analysis of transcript sequence and abundance. However, 
understanding of the sources of technical and interlaboratory variation is still limited. To address this, the GEUVADIS consortium 
sequenced mRNAs and small RNAs of lymphoblastoid cell lines of 465 individuals in seven sequencing centers, with a large 
number of replicates. The variation between laboratories appeared to be considerably smaller than the already limited biological 
variation. Laboratory effects were mainly seen in differences in insert size and GC content and could be adequately corrected for. 
In small-RNA sequencing, the microRNA (miRNA) content differed widely between samples owing to competitive sequencing 
of rRNA fragments. This did not affect relative quantification of miRNAs. We conclude that distributing RNA sequencing 
among different laboratories is feasible, given proper standardization and randomization procedures. We provide a set of quality 
measures and guidelines for assessing technical biases in RNA-seq data.
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a set of essential quality measures for RNA-seq experiments and dis-
cuss possible strategies for correction of technical biases. The biological 
interpretation of the results is reported in a companion study23.

RESULTS
Study design
A major objective of the current study was to evaluate the feasibility 
of sharing RNA-sequencing among different laboratories and subse-
quently combining the RNA-seq data obtained. To this end, we dis-
tributed randomly 465 RNA samples from lymphoblastoid cell lines 
from five populations to seven different European laboratories. Each 
center received 48 to 113 randomly assigned samples and strict sam-
ple preparation and sequencing guidelines (Supplementary Note). At 
these seven laboratories, the mRNA and sRNA fractions were prepared 
for sequencing using Illumina’s TruSeq kits for RNA and small RNAs, 
respectively. Samples were sequenced with the Illumina HiSeq2000 
platform, with paired-end, 75-bp reads for mRNA-seq and single-end  
36-bp (50 bp in some laboratories) reads for sRNA-seq. Five RNA 
samples were prepared and sequenced at all sites to allow proper esti-
mation of laboratory effects; 168 mRNA samples sequenced in other 
laboratories were prepared and sequenced twice in laboratory 1, with 
slightly lower numbers of reads in the repeated sequencing. The raw 

RNA sequencing (RNA-seq) has transformed the field of transcrip-
tomics1–4. Whereas expression microarrays are limited to the detec-
tion of known transcripts and have limited capacity to differentiate 
between transcript variants, RNA-seq can in principle detect all coding 
and noncoding transcripts in the cell and determine their sequence 
and structure. Moreover, sequencing-based methods for expression 
profiling appear to be more accurate and more sensitive toward low-
abundance transcripts5–11, even if increased variability in the low-
expression range has been reported12,13. Nevertheless, RNA-seq is not 
free of biases. Important biases are introduced by random hexamer 
priming14, differences in fragment size and transcript length15–17, and 
differences in GC content18,19. A systematic and large-scale analysis of 
the effects of such technical biases on mRNA and small-RNA (sRNA) 
quantification, as was performed by the MAQC consortium for expres-
sion microarrays20–22, has not been reported yet for RNA-seq.

The GEUVADIS consortium (Genetic European Variation in Disease, 
a European Medical Sequencing Consortium) focuses on the standardi-
zation of next-generation sequencing technologies. The consortium 
initiated a large-scale RNA-seq analysis where data production was 
distributed across different laboratories. In this report, we evaluate the 
sources of technical variation in RNA-seq experiments and the feasibil-
ity and consequences of distributing sequencing. Moreover, we provide 
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data (FASTQ files) were subsequently aligned 
with GEM24 (mRNA data) and miraligner25 
(sRNA data), and analyzed with a common pipeline that quantifies 
exon, transcript and sRNA expression levels (Online Methods).

Basic quality control steps in mRNA-seq
The laboratories were free to choose the number of samples to be 
pooled in one lane. Although the target number of reads was mini-
mally 20 million (10 million paired reads), the laboratories gener-
ally decided to choose conservative pooling schemes, avoiding the  
need for repetition of samples whose coverage was too low.  
This resulted in a median of 58 million reads with a broad range of 
17–167 million (Fig. 1a). The extent of the range was partly due to 
differences in the number of samples per lane and partly due to dif-
ficulties with equimolar pooling, which resulted in up to a threefold 
difference between the highest and lowest number of reads per sample 
in a lane.

We assessed the mRNA-seq data for basic quality measures, applied 
these metrics to compare the performance of the different laboratories 
(Fig. 1) and used several approaches to detect problematic samples 
(Fig. 2). A more extended list of all quality measures assessed is given 
in Supplementary Tables 1 and 2. All samples had similarly high mean 
PHRED scores, a measure for the quality of the base calling (Fig. 1b). 
The mean number of bases per read with a quality score >Q30 also 
indicated that the sequence quality was high (Fig. 1c), but this quality  
measure showed more variation between samples. Lower scores on 

this measure did not result in lower percentages of aligned reads. 
Sequence runs with >50% of the nucleotides having quality scores 
>Q30 are therefore acceptable. Duplication rates (assessed for single  
reads, not read pairs) centered around 20% for all laboratories 
(Fig. 1d). Higher duplication rates in RNA than in DNA sequenc-
ing are a result of genes with high expression levels. The percentage 
of aligned reads was generally very high except for a few samples 
(between 95–100%, Fig. 1e). Some of these outliers were associated 
with high duplication rates (Fig. 1d). Downstream analysis showed 
that lower mapping and higher duplication rates did not seem to affect 
the quantification of exons and transcripts, as the expression levels in 
these samples correlated strongly with all other samples (Fig. 2b,c). 
The percentage of aligned reads mapping to annotated exons were 
generally 60–80% (Fig. 1f). This is an important quality measure, as 
it collectively captures variation in enrichment for mature mRNAs,  
possible contamination and effectiveness of the alignment procedure. 
One sample (NA18861.4) had only 4% of aligned reads mapping to 
exons, while still having a high overall mapping rate. The extensive 
coverage in introns and intergenic regions of this sample suggested 
that it was contaminated with genomic DNA. This sample was 
excluded from the final set of samples used for biological interpreta-
tion. Two other samples (HG00099.5 and HG00329.5) had exonic 
content of only ~50% and were also characterized by high duplica-
tion and low mapping rates. These samples contained a large fraction 
(~20%) of rRNAs, presumably as a consequence of suboptimal polyA+ 
RNA selection. Again, this did not affect the quantification of the 
exons and transcripts (Fig. 2b).

Detection of problematic samples
To detect whether problematic samples could be identified before 
alignment, we analyzed the distance between k-mer profiles. To this 
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Figure 1 Basic quality statistics in mRNA 
sequencing across laboratories. Distribution of 
sequencing characteristics over 667 samples 
sequenced in seven different laboratories.  
For each feature, density plots were created  
to adjust for the differences in the number  
of samples processed by each laboratory.  
(a) Total number of reads obtained per 
sample. (b) Mean base quality (PHRED score) 
per sample. (c) Mean length of the longest 
continuous subsequence with quality  
over Q30. (d) Percentage of duplicate reads.  
(e) Percentage of mapped reads. (f) Percentage 
of aligned reads mapping to exons. The samples 
that did not pass quality control criteria in our 
study are shown as red dots.
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Figure 2 Detection of outliers in mRNA sequencing. (a) Histogram of 
median pairwise k-mer distances for each of the 667 samples with all 
other samples. (b) Histogram of median pairwise Pearson correlations  
(D-statistics) between exon expression levels after OPS transformation.  
(c) Gender-specific expression: normalized expression levels of  
female-specific XIST transcript (x axis) versus sum of the normalized 
expression levels of Y-chromosome transcripts excluding transcripts in  
the pseudo-autosomal regions (y axis). (d) Allele-specific expression 
analysis (ASE): for all heterozygous sites considered (Online Methods),  
the proportion of heterozygous single-nucleotide polymorphisms 
(SNPs) where both alleles were observed (x axis) was plotted against 
the proportion of heterozygous SNPs showing significant allelic bias in 
expression (P < 0.05, binomial test).
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end, we analyzed the abundance of all k-mers with length k = 9 and 
determined the pair-wise distance between the profiles of the different 
samples using a multiset distance measure26. The k-mer profile of 
NA18861.4 was clearly different from the rest (Fig. 2a). Some of the 
other samples with relatively high k-mer distances were samples with 
high duplication rates. The k-mer distances were strongly negatively 
correlated to the correlation measures obtained from the exon quan-
tification of the samples (Supplementary Fig. 1), but some samples 
with high duplication rates and/or high rRNA content were identi-
fied only with k-mer profiling. Thus, k-mer profiling is a promising 
quality assessment procedure that does not require alignment to a 
reference genome.

After alignment, we used pair-wise correlation measures on the 
quantification of exons and transcripts to detect problematic sam-
ples. Given the skewness of RNA-seq data, where there are few highly 
expressed transcripts and many of low abundance, use of the Pearson 
correlation on the linear scale is not appropriate. Therefore, we first 
applied an optimal power space (OPS) transformation (P.R. & M.S., 
data not shown), ensuring that low- and high-abundance transcript 
outliers do not bias the correlation measure and all data points con-
tribute equally to the computed coefficient (Supplementary Fig. 2).  
Figure 2b provides the distribution of the median Pearson correlations 

(D-statistics) of the quantification of exons for each sample. It was clear 
that NA18861.4 (with only 4% exonic reads) had lower correlations to 
the other samples. NA19144.4 was identified as an additional outlier 
and was removed from the analysis. Quantification of transcripts and 
genes identified the same outliers (Supplementary Fig. 3). In general, 
the correlations of gene expression levels were stronger than correla-
tions of exon expression levels. Gene expression levels are more robust 
because of the higher number of reads in a complete gene compared 
to an individual exon. Transcript quantification correlated much less 
than gene or exon quantification due to inherent uncertainty in the 
deconvolution and relative quantification of transcripts from the same 
gene (Supplementary Fig. 3).

Sample mix-ups are a general problem in studies analyzing large 
cohorts of samples and may severely compromise their power27. As a 
first check for sample swaps, we determined male and female origin, 
based on the expression of the XIST gene (exclusively expressed in 
females) and Y-chromosome genes (exclusively expressed in males) 
(Fig. 2c). Clear sample swaps, where samples marked female expressed 
Y-chromosome genes without expression of XIST or vice versa, were 
not observed. However, in three samples, there was expression of 
both XIST and Y-chromosome genes, indicative of contamination 
between samples.
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Figure 3 Sources of variation  
in mRNA expression levels.  
(a) Multidimensional scaling  
(MDS plot) of correlation of exon  
expression levels of five replicate  
samples (indicated with different  
colors) across seven different  
laboratories. (b) MDS plot of  
correlation of transcript  
expression levels of five replicate  
samples (indicated with different colors)  
across seven different laboratories.  
(c) Percentage variation in transcript expression levels explained by different sources: RIN (RNA integrity) value; RNA extraction batch; RNA 
concentration in initial sample; RNA quantity used for library preparation; library preparation date; indexing primer used; library concentration 
determination method (QBIT, Bioanalyzer or qPCR); library concentration obtained; mode of library size (as determined on Bioanalyzer, bp); library 
concentration used in sequencing; cluster kit; sequencing kit; cluster density (raw); lane of HiSeq2000 instrument in which the sample was run. 
Boxplots show distribution of the percentage of variance explained across all transcripts expressed in >50% of samples. Only samples with technical 
replicates in different laboratories passing quality control were included in this analysis (n = 367). (d) Boxplot of mean GC percentage in the reads 
across all 667 samples across different laboratories. (e) Boxplot of s.d. in GC percentage in the reads across all 667 samples across different 
laboratories. (f) Boxplot of the mode (highest frequency in the distribution) of the inferred insert size (i.e., the distance between the ends of the first 
and second reads; negative means overlapping sequences) of all 667 samples across different laboratories. (c–f) Boxes represent the 25–75 percentile, 
horizontal lines the median, whiskers the upper and lower quartile ± 1.5× the interquartile range.
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Sources of variation in mRNA-seq
Variation in expression levels between samples originates from bio-
logical and technological sources. In this study, we were interested in 
quantifying the relative contribution of technical and biological vari-
ation to the total variation and in tracing the most important sources 
of technical variation. When comparing individual lymphoblastoid 
cell lines, the biological variation is limited, as the only biological dif-
ference is the individual’s genetic and epigenetic background, whereas 
the cell type and growth conditions are the same. Nevertheless, the 
five samples that were sequenced in each laboratory clustered by  
sample and not by laboratory (Fig. 3a and Supplementary Fig. 4).  
The correlations between replicate samples run in the same labo-
ratory were slightly higher than between samples run in different 
laboratories (on average 0.931 versus 0.925 for exon quantification). 
The clustering by sample was much stronger for exon quantification 
than for transcript quantification (compare Fig. 3a with Fig. 3b and 
Supplementary Fig. 4a with Fig. 4b and Supplementary Fig. 5).

Given the stronger effect of technical variation on transcript quan-
tification than on exon quantification, we further investigated the 
sources of technical variation contributing to this variation. The RNA 
extraction batch was the strongest contributor to the observed tech-
nical variation (Fig. 3c). Slight inter-day differences between library 
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Identification of sample mix-ups in studies where DNA genotypes 
are available is relatively straightforward. For each individual, we eval-
uated the number of sites that were heterozygous in DNA genotypes 
for expression of both alleles in the mRNA-seq data. Owing to allele-
specific expression, this is usually not 100% but is generally >90% of all 
heterozygous sites in expressed genes. In the case of sample mix-ups, 
where there is a mismatch between DNA genotypes and mRNA-seq 
data, this number would be considerably lower. No such samples were 
observed in our data set (Fig. 2d). We also analyzed the percentage of 
sites showing significant allele-specific expression, that is, imbalance 
between the expression of the two alleles (P < 0.05, binomial test). This 
measure is also sensitive to sample contamination, as the expected 
50:50 allelic ratio over a heterozygous site in a given individual will be 
biased if even a small proportion of mRNA-seq reads is derived from 
another individual that may be homozygous for the site. The three 
suspected samples from the gender analysis were also found to be 
contaminated according to this analysis (Fig. 2d). In addition to these 
samples, another sample (NA19225.6) was identified by analysis of 
allele-specific expression as potentially being contaminated; the con-
tamination probably originated from a sample with the same gender. 
The one problematic sample (NA18861.4), for which there was a low 
proportion of exonic counts, was also an outlier in this analysis.

Figure 4 Modeling of hidden confounding factors with PEER effectively 
removes biases in mRNA-seq data. (a) Percentage of variance in transcript 
levels explained by sample and laboratory before PEER. (b) Percentage 
of variance explained by sample and laboratory after PEER. (a,b) Boxes 
represent the 25–75 percentile, horizontal lines the median, whiskers 
the upper and lower quartile ± 1.5×  the interquartile range. (c) Most 
important source(s) of variation correlated to each of the ten PEER 
factors. The quality control (QC) factor(s) that correlate best with each 
PEER factor are indicated on the left side of the plot and the strength 
of these correlations are given by the blue bars. The correlation of the 
laboratory with each PEER factor is shown by the green bars. Gene 
coverage reflects the average distribution of the coverage in different 
regions of the transcript (expressed as percentage of the total length 
of the transcript, derived from RSeQC, Online Methods). For numerical 
factors, Spearman correlations are shown. For categorical variables, the 
categories are first transformed into factors that are used together with 
each PEER factor in a linear regression. From the linear regression the R2 
value is extracted and used to measure the correlation. (d) MDS plot of  
transcript quantification before PEER colored by population. (CEU, Utah 
Residents with Northern and Western European ancestry; GBR, British; 
FIN, Finnish; TSI, Tuscans in Italy; YRI, Yoruba in Ibadan, Nigera). (e) MDS 
plot of transcript quantification before PEER colored by laboratory.  
(f) MDS plot of transcript quantification after PEER colored by population. 
(g) MDS plot of transcript quantification after PEER colored by laboratory. 
Only samples with technical replicates in different laboratories passing 
quality control were included in the analyses shown in a and b (n = 367), 
whereas all 660 samples passing quality control were included in the 
analyses shown in c–g.
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Supplementary Table 3). This effect was not related to RNA integ-
rity, which was captured mainly by factor 10, and may reflect biases 
introduced in the reverse transcription step.

After PEER correction of the transcript expression levels, clustering 
of samples by laboratory was less pronounced (Fig. 4d–g). Moreover, 
the number of detected eQTLs as well as the overlap with microarray-
derived eQTLs increased (Supplementary Fig. 10). Thus, technical 
variation, and in particular variation that is introduced by having 
sequencing done in several different laboratories, can be properly 
accounted for and has only limited influence on quantification of 
exons or transcripts in such a sequencing setting.

Basic quality control steps in sRNA-seq
We analyzed 492 samples by sRNA-seq, aiming for 3–6 million 
mapped reads. The obtained sequencing depth varied considerably, 
from 0.1–50 million reads per sample, with a median of 8.6 million 
reads (Fig. 5a). The sequencing quality was uniformly high, with sam-
ple mean PHRED score in a narrow band from around 36–39 (Fig. 5b 
and Supplementary Table 4). After adaptor trimming and before 
mapping, we discarded all sequences shorter than 18 nts, because 
such short sequences cannot be traced to genomic loci with high 
confidence. The fraction of reads thus discarded differed between 
samples, ranging from 0.5% to 81%, the percentage strongly depend-
ent on which laboratory did the sequencing (Fig. 5c). This wide range 
may be caused by slight differences in gel separation and purification, 
which were performed in the individual laboratories, or by variable 
degradation during library preparation.

Because many sRNAs are repetitive, we mapped the reads to 
the human genome build allowing for multiple mappings (Online 
Methods). The mapping efficiencies were uniformly high, consistent  
with the high sequencing quality (Fig. 5d). Notably, the relative 
miRNA content in our samples ranged from 2% to 62% of mapped 
reads, with a median of 19% (Fig. 5e). Given that some sRNA-seq 
studies report miRNA contents >90% (e.g., ref. 31), these numbers are 
overall low for reasons discussed in the next paragraph. Despite dif-
ferences in sequencing depth, fraction of short sequences and miRNA 
content, between 500 and 900 miRNA genes were robustly detected in 
all samples (Fig. 5f). Moreover, the same miRNA genes were consist-
ently profiled. The 500 most highly expressed miRNAs were detected, 
on average, in >96% of the samples.

Proportional differences do not affect quantification of miRNAs
We found that mapped sRNAs do not just originate from miRNA 
genes, but also from other noncoding RNA genes, in particular  

preparations and the effects of the different 
index primers were also notable (Fig. 3c), 
but these are partially confounded with the 
different laboratories in which the samples 
were processed.

Thus, despite the use of the same library 
preparation kits (and versions of these) and 
the availability of standardized protocols, 
slight differences in library preparations between laboratories were 
observed. Most notably, these were manifested in differences between 
the average GC percentage, the width of the distribution of GC per-
centages and the insert sizes (Fig. 3d–f). The exons with high GC con-
tent (>65%) demonstrated more variable expression levels between 
laboratories than exons with medium or low (<35%) GC content 
(Supplementary Fig. 6a). Relatively low representation of sequences 
with >65% GC content may be explained by the use of thermocyclers 
with high ramping speeds (Supplementary Fig. 6b)28.

Although all laboratories aimed for an insert size of ~10 bp (cor-
responding to a fragment size of 280 bp: 10 + 2 × 75 (read length) + 
120 bp (length of the adapters)), most laboratories produced slightly 
smaller inserts, resulting in partial overlap between the forward and 
the reverse read. The inferred insert size after alignment correlated 
well with the experimentally determined insert size (Supplementary 
Fig. 7). Differences in insert size will affect the potential to discrimi-
nate between transcript variants and consequently their relative 
quantification. This likely explains the stronger laboratory effects on 
transcript compared to exon quantification.

Other differences between laboratories included the concentration 
of the library obtained after sample preparation, the raw cluster den-
sity and the percentage of rRNA (Supplementary Fig. 8), but these 
did not seem to influence expression-level quantification.

Correction for variation in mRNA-seq
Next, we explored the correction of technical sources of variation. 
We used a recently described Bayesian framework that accounts for 
hidden variables in expression data (PEER29,30). PEER takes quantifi-
cation of genes or other expression units, such as transcripts, and uses 
factor analysis–based methods to infer factors that explain transcrip-
tome-wide variance components. Removing these factors from the 
data by regression has been shown to improve cis–expression quan-
titative trait loci (eQTL) discovery29,30. Before correction, the vari-
able ‘laboratory’ explained 6.8% of the total variance (average across 
transcripts, median: 3.8%) (Fig. 4a). In the residuals obtained after 
regression with the first ten PEER factors, the laboratory effect was 
reduced to 2.6% (average across transcripts; median 2.0%) (Fig. 4b). 
Laboratory effects were mainly captured by PEER factors 1, 3, 6, 7 
and 8 (Fig. 4c and Supplementary Fig. 9b). Moreover, the PEER 
factors were correlated with several of the other observed sources of 
technical variation: insert size (factor 1, 7), and GC content and other 
nucleotide biases (factor 2, 5, 6 and 8) (Fig. 4c and Supplementary 
Table 3). Finally, factors 1, 4, 5 and 7 were correlated with differences 
in the coverage in different regions of the transcript (Fig. 4c and 
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rRNA (Fig. 6a). Clustering divided the samples into those dominated 
by miRNA and those dominated by rRNA. The two groups were not 
associated with particular laboratories (Fig. 6a, lab color bar, left). 
Moreover, the replicates sequenced in all laboratories fell into groups 
mostly by sample and not by laboratory (Supplementary Fig. 11), and 
the miRNA and rRNA contents were more similar within samples  
than within laboratories (Supplementary Fig. 12). Importantly, the 
miRNA contents clearly varied between RNA extraction batches 
(Supplementary Fig. 13). Likewise, small nucleolar RNA (snoRNA) 
and other sRNA proportions clearly varied between samples  
(Fig. 6a). In conclusion, differences in the proportions of the differ-
ent sRNAs are likely introduced during RNA extraction, before the 
samples were distributed across the laboratories.

Consistent with the mode of biogenesis, the reads originating from 
miRNA genes were typically 22 nucleotides long after adaptor clipping 
(Fig. 6b). In contrast, the reads that originated from rRNAs were 35 
nucleotides long. As ~70% of these reads were mapping to the 5-kb 
28S rRNA, it is likely that these reads represent rRNA fragments. To 
test if the heterogeneity in the contents of sRNAs biased the quanti-
fication of individual miRNAs, we calculated the expression levels of 
715 miRNA genes based on their read counts. The samples did not 
cluster according to miRNA or rRNA content (Fig. 6c).

In a similar procedure as for the mRNA-seq, we calculated  
D-statistics for the correlation between normalized expression levels 
across samples, and we excluded four samples from the biological 
analysis that had D-statistics >0.8 (Supplementary Fig. 14). Again 
similar to mRNA-seq, we corrected miRNA expression levels by PEER 
and observed that GC percentage was the biggest source of variation 
needing correction, and that the GC percentage was correlated to the 
laboratory (Supplementary Fig. 15 and Supplementary Table 5).

DISCUSSION
In this paper, we have demonstrated that technical variation in RNA-
seq experiments is small and that results from RNA-seq experiments 

performed in different laboratories are consistent. This conclu-
sion is valid as long as all participating laboratories use the exact 
same protocols (Supplementary Note) and versions of sample  
preparation and sequencing kits. However, even when using identical 
protocols, slight variations in average GC content and insert size were 
observed. These differences translated into variations in quantifica-
tion of transcripts, whereas quantification of exons was less affected. 
Under less-standardized sequencing protocols, greater variation is 
expected. Moreover, RNA isolation and purification procedures, here 
performed in the same laboratory with standardized protocols, may 
contribute to variation in RNA-seq data.

The sources of variation contributing to differences between labora-
tories generally also play a role in smaller-scale experiments run in the 
same facility. This is, for example, true for differences in GC content, 
where considerable intralaboratory variation was also observed (Fig. 3).  
Based on the current study, we propose several parameters that 
should be assessed in any mRNA-seq data set to address the quality  
of the samples and/or explore the need for correction of important 
biases (Table 1). (i) The distribution of nucleotide-level quality scores 

Table 1 Important quality checks in mRNA and sRNA sequencing

Quality checks common to mRNA and sRNA sequencing
Distribution of base quality scores
Average and width of the distribution of GC content
Percentage of reads mapping to the genome
Checks for sample swaps and contaminations
Outlier detection: pairwise correlations in expression quantification between 

samples

Quality checks specific for mRNA
The average and s.d. of insert size
Percentage of reads mapping to annotated exons
5′–3′ trends in coverage across transcripts

Quality checks specific for sRNA
Length distribution after adaptor clipping
Percentage of reads mapping to known sRNA genes
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is the most basic quality measure, already implemented in nearly  
all sequencing centers, to address the quality of the sequencing run. 
(ii) The average and distribution of GC content as well as differences 
in proportion of reads with extreme (<35% or >65%) GC content 
induces biases in transcript quantification, which can be partially 
corrected with dedicated tools18,32. (iii) The average and s.d. of insert 
size influence mostly transcript deconvolution and quantification.  
A dedicated routine for correcting this bias has not been described so 
far. (iv) The percentage of reads mapping to annotated exons checks 
for genomic DNA contamination, the proportion of mature RNA in 
the total RNA pool, and the performance of the alignment procedure. 
The cut-off for this parameter depends on the sample preparation 
protocol and the aligner and annotation source used. As a rule of 
thumb derived from this and other mRNA-seq experiments, at least 
60% of mapped reads should overlap with annotated exons in a good 
quality sample. (v) A decrease in coverage from the 3′ to the 5′ end 
of the transcript, for example, assessed using the geneBody_coverage 
module from the RSeQC 2.0.0 (ref. 33) package, is suggestive of RNA 
degradation when sequencing polyA+ RNA. (vi) Sample swaps, con-
tamination and outliers should be checked for. Procedures described 
in this and other papers34,35 may be used when gender and/or geno-
type data are available. Alternatively, appropriate barcoding schemes 
are helpful to detect these artifacts.

We successfully applied the PEER algorithm to account for techni-
cal factors and to reduce their impact on expression level estimates. As 
for alternative methods using surrogate variables36 or principal com-
ponents37, it is not necessary to know the sources of variation before-
hand. However, this type of routine can only be used in relatively large 
studies, and potential removal of biological variation alongside the 
technical variation should be examined. For smaller studies, dedi-
cated algorithms and standard regression methods may be applied to  
correct for known technical biases14,17,18,32. Still, minimizing techni-
cal variation by careful standardization of protocols and randomiza-
tion in every experimental step (cell line handling, RNA extraction, 
sample preparation and sequencing) is essential.

This study focused on the quantification of both mRNA and sRNA. 
Although sRNA sample preparation is generally regarded as more 
challenging than its mRNA counterpart, technical variation intro-
duced in the sample preparation seems limited compared to differ-
ences originating from the RNA isolation procedure. An important 
evaluation parameter in sRNA sequencing is the read-length dis-
tribution after adaptor clipping (Table 1), which is correlated with 
the miRNA content of the sample. We found that seemingly spuri-
ous abundances of rRNA fragments were competing with miRNAs 
for sequencing, in some cases resulting in low miRNA read counts. 
However, when we considered only miRNA reads and normalized 
using these counts, we found that the rRNA abundances had no major 
confounding impact on miRNA quantification. This indicates that 
sRNA-seq data should not be analyzed as a whole, but split into dif-
ferent sRNA fractions before normalization. Further, differences in 
effective sequencing depth did not strongly influence the number of 
miRNA genes detected. Thus, despite the heterogeneity in sRNA data, 
simple precautions can ensure robust results.

Our mRNA-seq study and the microarray-based MAQC studies20 
both addressed the technical variation introduced by analyzing sam-
ples in different laboratories. For both technologies, it was concluded 
that the intersite variability is limited when working with standard-
ized protocols. However, it is difficult to compare the interlaboratory 
reproducibility of mRNA-seq in this study with the interlaboratory 
reproducibility of gene expression microarrays in the MAQC study, 
given differences in experimental design, differences in the scales on 

which mRNA-seq and microarray data are reported, and the much 
higher dynamic ranges of mRNA-seq counts compared to microarray 
intensities. For example, the biological variation in our experiment 
was orders of magnitude smaller than the differences between the 
tissues studied by the MAQC consortium. Where MAQC extensively 
validated results by confirming genes differentially expressed between 
a small number of tissues by quantitative PCR, we have proven the 
validity of our measurements by showing high power for detection of 
a large set of cis-eQTLs in a large set of 465 independent samples23. 
The small effect sizes detected with the majority of eQTLs, confirms 
conclusions from earlier papers that mRNA-seq technology is at least 
as robust as microarray technology5–11,19,38.

In conclusion, distributing RNA-sequencing among different labo-
ratories appears to be feasible. It is particularly attractive for large 
population-based and cross-biobank studies, where sequencing costs 
and sample logistics may require the combination of data from indi-
vidual studies and laboratories.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The raw FASTQ files and BAM alignments as well as 
different types of quantification are available in ArrayExpress under 
accessions E-GEUV-1 (mRNA) and E-GEUV-2 (small RNA) for  
QC-passed samples and E-GEUV-3 for all sequenced samples.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Samples and sequencing. Epstein-Barr virus (EBV)-transformed lymphob-
lastoid cell lines directly from Coriell Cell Repositories (GBR, FIN, TSI) or 
originally from Coriell but grown at the University of Geneva (CEU, YRI) were 
shipped to ECACC (European Collection of Cell Cultures) as live cultures, 
in batches of ~30 samples from Coriell and 2 × ~90 samples from Geneva. 
In ECACC, these cell lines were cultured to ~1.2 × 108 cells. These cultures 
were split to produce 8× cell banks of the samples, and a snap-frozen pellet of 
2 × 107 cells from a proliferating culture. The cell pellets were shipped from 
ECACC to University of Geneva in three batches, the first batch consisting 
of CEU/GBR/FIN/TSI samples, and the second and third batch with YRI and 
the rest of CEU samples.

RNA was extracted in Geneva about 14 samples at a time. First, two-thirds 
of the first shipping batch was extracted with full randomization. Then, RNA 
was extracted from the second batch and the remaining one-third of the first 
batch with full randomization. Finally the third batch was extracted, again 
with full randomization. Total RNA was extracted from cell pellets using the 
TRIzol Reagent (Ambion). The pellets had been frozen at ECACC without any 
additives like RNAlater or TRIzol. In Geneva they were thawed, 1 ml of TRIzol 
was added in each sample, and the samples were transferred to Eppendorf 
tubes. The rest of the protocol followed the manufacturer’s guidelines. RNA 
samples were not treated with DNase. RNA quality was assessed by Agilent 
Bioanalyzer RNA 6000 Nano Kit according to the manufacturer’s instructions. 
RNA quantity was measured by Qubit 2.0 (Invitrogen) using the RNA Broad 
range kit according to the manufacturer’s instructions.

Each of the sequencing laboratories were sent a minimum of 4 µg of total 
RNA of the samples allocated to them, and RNA Bioanalyzer was run for 
10–20% of the RNA samples before library preparation to confirm sample 
quality after shipping. No further purification was done to the RNA samples 
other than that specified in the sequencing protocols. Library preps were done 
in random order in every laboratory.

mRNA sequencing was done on the Illumina HiSeq2000 platform with 75 bp  
paired-end sequencing with fragment size of ~280 bp—some laboratories 
sequenced 100-bp reads, which were trimmed to 75 bp. TruSeq RNA Sample 
Prep Kit v2 (the high-throughput protocol) was used for library preparation, 
TruSeq PE Cluster Kit v3 for cluster generation and TruSeq SBS Kit v3 for 
sequencing. The laboratories were allowed to choose freely how to pool the 
samples to get the desired minimum of 10 M mapped and properly paired read 
pairs from any standard mapper, without filtering for mapping quality.

Small RNA sequencing was done on the Illumina HiSeq2000 platform with 
36 bp single-end sequencing with fragment size of 145–160 bp. Some labora-
tories sequenced 50-bp reads which were trimmed to 36 bp. TruSeq SmRNA 
Sample Prep kit was used for library preparation, TruSeq PE Cluster Kit v3 for 
cluster generation and TruSeq SBS Kit v3 for sequencing. The laboratories were 
allowed to choose freely how to pool the samples to get the desired minimum 
of 3 M total reads.

Extensive information of sample processing was collected from all the  
laboratories for both mRNA-seq and sRNA-seq in order to enable control of 
batch effects.

Raw data processing. Each lab submitted one demultiplexed FASTQ file 
per sample per mRNA and miRNAseq, produced by CASAVA 1.8 or 1.8.2, 
allowing one mismatch in the index. Reads failing Illumina quality filtering 
were removed. The FASTQ files are named as: SAMPLE_ID.SeqLabNumber.
M/MI_YYMMDD_Lane_Read.fastq.gz, where M/MI stands for mRNA or 
miRNA sequencing, and YYMMDD is the sequencing date. All the data were 
submitted and initially stored in the project ftp site. Samtools was used for 
general data processing throughout the project.

mRNA analysis pipeline. We employed the JIP pipeline (T.G. & M.S., data 
not shown) to map mRNA-seq reads and to quantify mRNA transcripts. For 
alignment to the human reference genome sequence (GRCh37, autosomes + 
X + Y + M), we used the GEM mapping suite24 (v1.349 which corresponds 
to publicly available pre-release 2) to first map (max. mismatches = 4%,  
max. edit distance = 20%, min. decoded strata = 2 and strata after best = 1)  
and subsequently to split-map (max.mismatches = 4%, Gencode v12 and 
de novo junctions) all reads that did not map entirely. Both mapping steps 

are repeated for reads trimmed 20 nucleotides from their 3′-end, and then 
for reads trimmed 5 nucleotides from their 5′-end in addition to earlier  
3′-trimming—each time considering exclusively reads that have not been 
mapped in earlier iterations. Finally, all read mappings were assessed with 
respect to the mate pair information: valid mapping pairs are formed up to a 
maximum insert size of 100,000 bp, extension trigger = 0.999 and minimum 
decoded strata = 1. The mapping pipeline and settings are described below 
and can also be found in https://github.com/gemtools, where the code as well 
as an example pipeline are hosted.

The GEM output format was converted to BAM format, with following 
mapping quality scores and flags:

(1)  Matches which are unique, and do not have any subdominant match:  
251 ≥ MAPQ ≥ 255, XT = U

(2)  Matches which are unique, and have subdominant matches but a different 
score: 175 ≥ MAPQ ≥ 181, XT = U

(3)  Matches which are putatively unique (not unique, but distinguishable by 
score): 119 ≥ MAPQ ≥127, XT = U

(4) Matches which are a perfect tie: 78 ≥ MAPQ ≥ 90, XT = R.

Furthermore, the NM flag contains the number of total mismatches 
(read1+read2). In analysis, we used reads in categories 1 and 2 and with  
NM ≤ 6. The settings employed ensured that for every read at least one stra-
tum more than the optimal mapping was assessed, to distinguish bona fide 
alignments of bad quality reads from mapping noise. Split mappings were 
detected based on the Gencode v12 annotation and additionally discovered 
de novo. Read mappings were paired and converted to BAM files, employing 
a scoring scheme over mismatches, quality values and uniqueness in the case 
of multi-maps.

Exon quantification was calculated after merging overlapping exons into 
meta-exons. Read counts over these meta-exons were calculated by summing 
the number of reads with overlapping start or end coordinates. For split reads, 
we counted the exon overlap of each split fragment, and added counts per read 
as 1/(number of overlapping exons per gene).

Flux Capacitor39 was used for quantification of transcripts. Quantification 
is based on the annotation-mapped genomic mappings considering tran-
script structures of the Gencode transcriptome annotation: mappings of read 
pairs that were completely included within the annotated exon boundaries 
and paired in the expected orientation have been taken into account. Reads 
belonging to single transcripts were predicted by deconvolution accord-
ing to observations of paired reads mapping across all exonic segments of a 
locus. Gene quantification was calculated as the sum of all transcript RPKMs  
(reads per kilobase per million) per gene.

sRNA analysis pipeline. Data sets with read lengths longer than 36 nts were 
trimmed using the FASTX suite (http://hannonlab.cshl.edu/fastx_toolkit/) 
and homo-polymer reads and reads with low PHRED scores were removed. 
Adapters were clipped using the seqBuster suite25 and custom searches. Reads 
shorter than 18 nts were discarded. The remaining reads were mapped to 
the human genome (hg19) using bowtie and annotated with GENCODE 8, 
supplemented with rRNA and LINE and Alu transposon annotations from 
RepBase40 and snoRNA and miRNA annotations from the UCSC table 
browser41. Annotations were first resolved so that each nucleotide on each 
strand had exactly one annotation. In case of nucleotides with more than one 
annotation, conflicts were resolved using a confidence-based floating hierar-
chy42. Each read mapping was weighted inversely to the number of genome 
mappings for the read, for example, a read mapping to two genomic locations 
would get an assigned weight of 0.5. Each mapping was counted toward the 
annotation of the nucleotide in the middle of the mapping. miRNA quantifica-
tion was performed with the custom tool miraligner25.

Quality control measures. A comprehensive set of quality control statistics 
was obtained with a combination of existing software and in-house scripts. The 
following programs were run on each sample whereupon relevant information 
in the output was extracted and collected to one quality control master file:

FastQC 0.7.2 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/)

https://github.com/gemtools
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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RSeQC 2.0.0 (ref. 33) (Modules used: geneBody_coverage (using refseq 
release 52), bam_stat, clipping_profile, read_distribution (using refseq release 
52), read_duplication, read_GC, read_NVC)

PICARD 1.59 (http://sourceforge.net/projects/picard/; Modules used: 
EstimateLibraryComplexity, and MarkDuplicates).

All programs were run with the default parameters except the 
MarkDuplicates module in Picard that needed a regular expression for read 
name recognition adjusted to the current data.

Additional quality control data were obtained from in-house scripts used 
by the Uppsala University SNP&SEQ Technology Platform and University 
of Geneva. To calculate the average distribution of the coverage in differ-
ent regions of the transcript, we used the output from RSeQC reflecting the 
total number of reads that map to a position of a transcript, after scaling all 
transcript positions to length 100. The positions 1–100 were binned again 
in 10% bins and then expressed as a percentage by dividing the number of 
reads in each bin by the total number of mapped reads for that sample. This 
resulted in the Gene_coverage_perc_X columns in Supplementary Table 2,  
Figure 4c and Supplementary Figure 9. The mode of the insert size (defined 
as the distance between the ends of the first and second reads) is calculated 
from all properly paired mapped reads of chromosome 1 in the bam file. The 
mode is the insert size that has the highest frequency. Further details on the 
parameters analyzed can be found in Supplementary Table 1.

K-mer profiling. We counted the abundance of all k-mers (k = 9) within the 
raw sequence reads by custom python scripts (S.Y.A. et al., data not shown). 
Subsequently, the pairwise distance between the profiles of the different sam-
ples was calculated using the multiset distance measure26. This metric is para-
metrized by a function that reflects the distance between two elements in a 
multiset, in this case the difference in k-mer counts for one specific k-mer. 
We chose the following function:
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To correct for differences in total number of reads, we scaled the profiles 
before each pairwise comparison. The scaling procedure first calculates the 
total amount of k-mers in both profiles and then uses the ratio to scale the 
values to the smallest profile.

OPS transformation and correlation measures. Because gene expression fol-
lows a power law distribution (P.R. and M.S., data not shown), it is intuitive to 
use a suitable exponent in order to transform data to a more normal distribu-
tion, minimizing the impact of outliers. The OPS package (http://cran.r-project.
org/web/packages/ops/) dynamically optimizes the normalization power 
according to the distribution of data points. Supporting the general agreement 
of data sets produced by different laboratories, we found consistently an OPS 
exponent of 0.11 for all sample comparisons. To assess correlations between 
samples, we calculated Pearson correlations after raising the expression values 
to the power of 0.11. We subsequently defined the D-statistic as the median of 
the pairwise correlations between a sample and all other samples.

Allele-specific expression. The following heterozygous sites were considered 
for this analysis: (i) sites with 50-bp mappability <1; (ii) sites showing <5% 
difference in the mapping of simulated reads that carry the reference or non-
reference allele; (iii) sites covered by ≥8 reads in each individual. We used a 
binomial test to compare the REF/NONREF allele counts to the expected ratio 
(calculated after correction for any remaining genome-wide mapping bias as 
well as GC bias in each individual).

Summary statistics from allele-specific expression analysis can be used 
to detect sample contamination and sample swaps, as such errors affect the 
heterozygosity over variant sites. To this end, we calculated two statistics per 
sample. (i) The proportion of sites where both alleles are observed in mRNA-
seq reads, out of all the sites where allele-specific expression is measured. 
Whereas observing only one allele may sometimes be caused by true monoal-
lelic expression, a high proportion of such sites suggests sample mislabeling, 
with genotype and mRNA-seq data coming from different individuals and 
many heterozygous sites in genotype data being actually homozygous, thus 
leading to only one allele observed in mRNA-seq data. (ii) Another diagnos-
tic statistic is the proportion of sites with significant (binomial test P < 0.05) 
allele-specific expression out of all the sites. This proportion would detect 
sample mislabeling as well—as a very strong increase—but it can also capture 
more subtle sample contamination in mRNA-seq data: when analyzing allelic 
ratios of a heterozygous site in an individual, even a small amount of RNA from 
another individual who is often homozygous for the site will bias the allelic 
ratios and increase the probability of significant allele-specific expression.

Quantitative dissection of sources of variation. To assess the contribution 
of different sources of variation to transcript expression, we analyzed the 
expression of 74,634 transcripts that were expressed in >50% of the samples.  
To be able to estimate technical variation, we selected only the 376 samples  
coming from 173 unique RNA preparations that were analyzed more than 
once. Transcript quantification was normalized by using the trimmed mean 
of M-values (TMM) normalization method from the edgeR package43  
(v. 2.6.9), which includes scaling with respect to differences in sequencing 
depth after trimming of ratios. Subsequently, data were subjected to logarith-
mic transformation and the mean-variance trend was removed using the voom 
function from the limma package (v. 3.12.1; http://www.bioconductor.org/
packages/2.11/bioc/html/limma.html). We subsequently analyzed the contri-
bution of different sources of variation in the RNA sample itself or introduced 
during the sample preparation procedure, avoiding the inclusion of sources 
of variation that were confounding. Standard (nonhierarchical) linear models 
in R were fitted for each transcript, taking into account the weights calculated 
by the voom function that are based on the inverse of the variance. For each 
transcript, the percentage of variation explained by each factor was calculated 
from the resulting ANOVA tables by dividing the sum of squares by the total 
sum of squares. Boxplots demonstrate the distribution of the percentage of 
variation explained across transcripts.

PEER correction. Exon, transcript and sRNA quantification were cor-
rected using PEER29,30, which finds synthetic covariates from quantifi-
cation data that can then be regressed out from the data. Ten and nine 
covariates were used for mRNA and sRNA quantification, respectively. For 
calculation of correlations between samples after PEER, all negative expres-
sion values were set to zero and subsequently raised to the power of 0.11  
(OPS transformation).
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