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Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional
effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep
analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes
Project—the first uniformly processed high-throughput RNA-sequencing (RNA-seq) data from multiple human popula-
tions with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation
of most genes, with transcript structure and expression level variation being equally common but genetically largely inde-
pendent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and
loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether,
this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of
functional variants in the human genome.

Interpreting functional< consequences of millions of discovered genetic
variants is one of the biggest challenges in human genomics1. Although
genome-wide association studies (GWAS) have linked genetic loci to vari-
ous human phenotypes and the functional annotation of the genome is
improving2,3, we still have a limited understanding of the underlying
causal variants and biological mechanisms. One approach to addressing this
challenge has been to analyse variants affecting cellular phenotypes, such
as gene expression4–8, known to affect many human diseases and traits9,10.

In this study, we characterize functional variation in human genomes by
RNA-sequencing hundreds of samples from the 1000 Genomes Project1,
the most important reference data set of human genetic variation, thus
creating the biggest RNA sequencing data set of multiple human popu-
lations so far. We not only catalogue novel loci with regulatory variation,
but also, for the first time, discover and characterize molecular proper-
ties of causal functional variants.

We performed mRNA and small RNA sequencing on lymphoblastoid
cell line samples from five populations: the CEPH (CEU), Finns (FIN),

British (GBR), Toscani (TSI) and Yoruba (YRI). After quality control, we
had 462 and 452 individuals (89–95 per population) with mRNA and
miRNA data, respectively (Supplementary Figs 1–11 and Supplementary
Table 1). Of these, 421 are in the 1000 Genomes Phase 1 data set1, and the
remainder were imputed from single nucleotide polymorphism (SNP)
array data (Supplementary Fig. 3 and Supplementary Table 2). High-
throughput RNA sequencing (RNA-seq) was performed in seven labora-
tories, and the smaller amount of variation between laboratories than
individuals demonstrated that RNA sequencing is a mature technology
ready for distributed data production (MW P , 2.2 3 1026 for mRNA,
P 5 1.34 3 10210 for miRNA; Fig. 1a, Supplementary Fig. 11; for further
details see (ref) P.A.C.H. et al. manuscript submitted). To discover genetic
regulatory variants, we mapped cis- quantitative trait loci (QTLs) to trans-
criptome traits of protein-coding and miRNA genes separately in the Euro-
pean (EUR) and Yoruba (YRI) populations (Table 1, Supplementary Fig. 12
and Supplementary Table 3). The RNA-seq read, quantification, genotype
and QTL data are available open-access (see Author Information section).
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Transcriptome variation in populations
This first uniformly processed RNA-seq data set from multiple human
populations allowed high-resolution analysis of transcriptome varia-
tion. Individual and population differences in transcripts can manifest
in (1) overall expression levels, and (2) relative abundance of transcripts
from the same gene (transcript ratios). Deconvolution of the relative
contribution of these11 indicates that this ratio is characteristic for each
gene, with transcript ratio being on average more dominant (Fig. 1b
and Supplementary Figs 13 and 14). Population differences explain
a small but significant proportion of 3% of the total variation (MW
P , 2.2 3 10216). In addition to this genome-wide perspective to popu-
lation variation, we identified 263–4,379 genes with differential expression
and/or transcript ratios between population pairs (P.G.F. et al. manu-
script submitted). Notably, continental differences between YRI–EUR
population pairs have a much higher contribution of genes with diffe-
rent transcript usage than European population pairs (75–85% versus
6–40%; Fig. 1c and Supplementary Fig. 14). This has not been observed
before in humans, but it is consistent with splicing patterns capturing
phylogenetic differences between species better than expression levels12,13.

We quantify a total of 644 autosomal miRNAs in .50% indivi-
duals, of which 60 have significant cis-eQTLs for miRNA expression

levels (cis-mirQTLs, Table 1 and Supplementary Fig. 15), showing
that genetic effects on miRNA expression are much more widespread
than the previously identified loci14. To complement previous studies
of miRNA function in cell perturbation experiments, we analysed
miRNA–mRNA interactions in our steady-state population sample.
Of 100 miRNA families, 32 correlated with the expression of predicted
target exons in a highly connected network (P , 0.001; Fig. 1d and
Supplementary Table 4), including miRNA families with important
immunological or lymphocyte functions, such as miR-150, miR-155,
miR-181 and miR-146 (ref. 15). Interestingly, 45% of the associations
were positive—consistent with previous results14—even though based on
perturbation experiments miRNAs mostly downregulate genes. Analy-
sing the direction of causality, cis-mirQTLs had small trans-eQTL effects
to predicted targets only when effects were negative (P1 5 1 – Storey’s
P0 5 0.11 versus P1 5 0; Supplementary Fig. 16), suggesting that
miRNAs indeed downregulate their targets. Positive correlations may
be driven by other effects, which is supported by overrepresentation
of transcription factors in the network (29%, Fisher P 5 2.1 3 1027

for negative targets and 26% P 5 4.0 3 1024 for positive targets). This
suggests feedback loops of both mRNA and miRNA genes affecting
the expression of each other, and supports the idea that under steady-
state conditions, miRNAs confer robustness to expression programs16.
Altogether, these results highlight the added insight into the role of
miRNAs in regulatory networks from analysis of population variation.

Genetic effects on the transcriptome
Expression QTL (eQTL) analysis of protein-coding and long inter-
genic non-coding RNA (lincRNA) genes uncovered extremely wide-
spread regulatory variation, with 3,773 genes having a classical eQTL
for gene expression levels (Table 1). Although the potential of RNA-
seq to discover other transcriptome traits such as splicing variation is
widely known7,8,17–19, a comprehensive analysis has been lacking. To
this end, we first mapped eQTLs for exon quantifications that can
capture both gene expression and splicing variation, discovering as
many as 7,825 genes with an eQTL, referred to as eQTLs in this paper
unless otherwise specified. Regressing out the most significantly associ-
ated variant from the EUR eQTL analysis showed that as many as 34%
of the genes have a second, independent eQTL for any of their exons (of
which 7% for the exon of the first association). Thus, there is substantial
allelic heterogeneity for regulatory effects on a single gene and indepen-
dence of exons of the same gene (Supplementary Fig. 17). To investi-
gate genetic effects specifically on splicing, we discovered 639 genes
with transcript ratio QTLs (trQTLs) affecting the ratio of each transcript
to the gene total—the largest number of genetic effects on transcript
structure identified so far. The lower number relative to gene eQTLs is
probably caused by higher noise in model-based transcript quantifica-
tions than in gene counts. To characterize the relationship of genetic
variants affecting expression versus splicing, we regressed out the best
trQTL variant from the gene eQTL analysis in 279 genes with both
types of QTL. The results showed that the causal variants are indepen-
dent in $57% of these genes (Supplementary Fig. 18), suggesting that
transcriptional activity and transcript usage are usually controlled by
different regulatory elements of the genome.

The transcript differences driven by trQTLs involve exon skipping
only in 15% of genes, with as much as 48% and 43% varying in 59 and
39 ends, respectively (in EUR; categories not mutually exclusive; Fig. 2b).
To analyse transcript modifications further through unannotated tran-
script elements, we mapped cis-eQTLs for expressed retrotransposon-
derived elements (repeat elements) outside genes, known to be an important
source for evolution of new transcripts20. We detected widespread sharing
between the 5,763 cis-eQTLs discovered for repeat elements (Table 1
and Supplementary Fig. 19) and nearby exon eQTLs: of the best repeat
eQTLs variants in EUR, 49% were significant and 6% the top eQTLs
variants for exons of a nearby gene (3.83 and 263 enrichment; Fisher
P , 2.2 3 10216). This suggests that retrotransposon-derived elements
can share regulatory elements with nearby genes. These results provide
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Table 1 | Numbers of transcriptome features with a QTL (FDR 5%)
Total EUR (n 5 373) YRI (n 5 89) Union

Exon eQTL 12,981 genes 7,390 2,369 7,825
Gene eQTL 13,703 genes 3,259 501 3,773
Transcript
ratio QTL

7,855 genes 620 83 639

mirQTL 644 miRNAs 57 15 60
Transcribed
repeat eQTL

43,875 repeats 5,763 1,055 6,069

FDR, false discovery rate.
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Figure 1 | Transcriptome variation. a, Spearman rank correlation of replicate
samples, based on mRNA exon and miRNA quantifications of 5 individuals
sequenced 8 and 7 times for mRNA and miRNA, respectively, and separated by
the individual (indv.) or the sequencing laboratory (lab.) being the same or
different (diff.). The quantifications have been normalized only for the total
number of mapped reads (see Supplementary Fig. 10 for correlations after
normalization). b, The proportion of expression level variation (as opposed to
splicing) of the total transcription variation between individuals in each
population, measured per gene. c, Proportion of genes with differential
expression levels and/or transcript usage between population pairs, out of the
total listed on the right-hand side. d, Network of significant miRNA families
(P , 0.001; yellow) and their significantly associated mRNA targets (P , 0.05;
purple). The edges display negative (green) and positive (red) associations.
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the first, to our knowledge, genome-wide characterization of genetic
effects on transcript structure through annotated and unannotated 39

and 59 changes, which may predominate the exon skipping that previous
studies have focused on18. This opens new perspectives for understand-
ing their cellular and high-level effects, as end modifications will rarely
change protein structure but may affect post-transcriptional regulation.

Altogether, we present the largest and the most diverse catalogue of
cis-regulatory variants discovered in a single tissue so far. Most of the
analysed genes—8,329 out of 13,970—have one or several QTLs for
different transcript traits, a resolution enabled by in-depth analysis of
high-quality transcriptome and genome sequencing data. These results
highlight both allelic heterogeneity of regulatory variants and pheno-
typic heterogeneity of diverse transcriptome traits of individual genes.

Properties of regulatory variants
To understand how eQTLs affect gene expression, we compared the
properties of the top (most significant) eQTL variant per gene to a null
of non-eQTL variants (matched for distance from transcription start
site (TSS) and minor allele frequency). The best eQTL variant may not
always be the causal variant owing to noise in genotype and pheno-
type data, and to estimate our ability to pinpoint causal variants, we
contrasted the properties of the first eQTL to the second, fifth and
tenth best eQTL variants (Fig. 2a).

First, comparing the eQTL with the best P value to the matched null
showed an enrichment of indels among top eQTLs (13% 5 1.223

enrichment; Fisher P 5 1.9 3 1023 in EUR; Supplementary Fig. 20),
suggesting that indels are more likely to have functional effects than
SNPs. eQTLs are highly enriched in several non-coding elements from
the Ensembl Regulatory Build, such as many transcription factor peaks
(median enrichment 3.33, median P 5 0.009 in EUR; Fig. 2a and Sup-
plementary Fig. 21), DNase1 hypersensitive sites (3.43, P 5 1.003 10220),
as well as in chromatin states of active promoters (3.53, P 5 1.083 10236)
and strong enhancers (median 2.43, median P 5 1.14 3 1025). Within

genes, splice-site (3.83, P 5 1.65 3 1025) and non-synonymous (2.33,
P 5 4.84 3 1026) enrichments point to putative regulatory functions of
coding variants. Transcript ratio QTLs are overrepresented in splice
sites (6.83, P 5 2.44 3 1027; Supplementary Fig. 22), as expected, but
also, for example, in 39 untranslated regions (2.53, P 5 1.83 3 1026)
and promoters (2.43, P 5 5.79 3 1026). Altogether, the higher resolu-
tion of annotations and eQTLs relative to previous studies21,22 provides
important insight into the role of individual transcription factors and
other regulatory elements mediating genetic regulatory effects.

Functional enrichment typically decreases rapidly from the best eQTL
variant towards lower ranks. To estimate how often the first variant is
likely to be the causal regulatory variant, we calculated the annotation
enrichment of the best eQTL variants relative to the null for (1) all
eQTL loci, and (2) loci in which the best eQTL variant is very likely
causal owing to having a log10 P-value .1.5 higher than the second
variant (Supplementary Fig. 23). The ratio of the enrichments (1) and
(2) yields an approximation of the best variant being causal in 55% of
EUR and 74% of YRI eQTLs, with more conservative estimates being
34% and 41%, respectively (Supplementary Fig. 23). Thus, we have reason-
able power to pinpoint causal regulatory variants from unbiased P-value
distributions alone without annotation priors22. This is enabled by not
relying on SNP array data21: in 81% of the cases the best variant is not
on the Omni 2.5M array (Fig. 2c and Supplementary Fig. 25). Valida-
ting the putative causal effects, we observed that the best eQTL vari-
ants in CTCF peaks showed more allele-specific binding compared to
matched null variants (P 5 2.0 3 1023; Supplementary Fig. 24) using
CTCF ChIP-seq data from six individuals23, and the best eQTLs were
enriched in DNase1 hypersensitivity QTLs24 (3.33, P 5 2.51 3 1026

in EUR, 7.93, P , 2.2 3 10216 in YRI). In conclusion, we not only
identify broad eQTL loci but also substantially increase our confidence
to pinpoint individual causal variants and their functional mechanisms.

Of the 6,473 variants in the GWAS catalogue25, 16% are eQTLs and
1.8% are trQTLs in EUR or YRI, but a high overlap is observed also by
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Figure 2 | Transcriptome QTLs. a, Enrichment of EUR exon eQTLs in
functional annotations for the first, second, fifth and tenth best associating
eQTL variant per gene, relative to a matched null set of variants denoted by the
horizontal line. The numbers are –log10(P values) of a Fisher test between the
best eQTL and the null. UTR, untranslated region.= b, Classification of changes

caused by transcript ratio QTLs. c, The rank of the best Omni 2.5M SNP among
the significant EUR eQTL variants per gene. d, The DGKD gene locus, in which
an intronic SNP rs838705 is associated with calcium levels (red), and the top
eQTL variant 21 kb downstream (blue) is a very likely causal variant, close the
TSS of two transcripts in the MEF2A,C binding region.
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chance for a frequency-matched GWAS null (11% and 0.84%, respec-
tively). The modest (albeit significant: eQTL x2 P , 2.2 3 10216; trQTL
P 5 7.2 3 1029) enrichment9,10 is due to eQTLs being very ubiquitous,
and consequently, a GWAS variant being an eQTL does not mean that
the regulatory change is necessarily driving the disease association. Our
data offers a unique opportunity to address the key question of whether
the causal eQTL variant is also causal for the disease. The enrichment of
GWAS SNPs in the top eQTL ranks (P 5 1.18 3 1027; Supplementary
Fig. 26) is a genome-wide signal of shared causality. To characterize
individual loci further, we selected 78 eQTL regions that are likely causal
signals for 91 GWAS SNPs (estimated by the regulatory trait concord-
ance method)6,9, and in these loci our best eQTL variant is the putative
disease-causing variant (Supplementary Fig. 27 and Supplementary
Table 5). Figure 2d shows an example of the DGKD gene, in which an
intronic SNP rs838705 is associated with calcium levels26, and 21 kilo-
bases (kb) downstream the top eQTL—a 2-base pair (bp) insertion—is
the likely causal variant affecting calcium levels. Thus, the integration
of genome sequencing and cellular phenotype data helps to not only
understand causal genes and biological processes but also pinpoint
putative causal genetic variants underlying GWAS associations.

Allelic and loss-of-function effects
Transcript differences between the two haplotypes of an individual
allow quantification of regulatory variation even when eQTLs cannot
be detected, for example, owing to low allele frequency. We analysed
both allele-specific expression (ASE) and allele-specific transcript struc-
ture (ASTS), a novel approach based on exonic distribution of reads
(Supplementary Figs 2 and 28–33). This first genome-wide quantifica-
tion of allelic effects on transcript structure shows that it is almost
equally common as ASE, with significant (P , 0.005) ASE and ASTS
in a median of 6.5% and 5.6% sites (out of 8,420 and 2,135) per indivi-
dual, respectively. Furthermore, the substantial overlap of ASE and
ASTS signals (Fig. 3a) suggests that ASE may actually often be driven
by transcript structure variation. The low population frequency of the
vast majority of ASE (Fig. 3b) and ASTS (Supplementary Fig. 30) events
points to widespread rare regulatory variation that is undetectable in
eQTL analysis.

An important caveat in ASE analysis has been the possibility that it
can be driven by purely epigenetic effects rather than cis-regulatory
genetic variants. We investigated this by a novel approach to quantify
concordance between ASE and putative regulatory variants (prSNPs),
in which heterozygotes but not homozygotes for a true rSNP should
have differential expression of the two haplotypes, that is, allelic imbalance
in an aseSNP (Supplementary Figs 2 and 34). We calculated concordance
of allelic ratios of 5,479 aseSNPs and genotypes of all variants 6 100 kb
from TSS, with an empirical P value from 100–1,000 permutations.
Assigning the prSNPs with empirical P-value , 0.01 to P , 0.001 as

likely rSNPs yielded a total of 224,640 rSNPs (7.4% of tested; Sup-
plementary Table 6) that clustered close to TSS as expected for regula-
tory variants5 and replicated most eQTL signals (Supplementary Fig. 35).
Nearly all aseSNPs (95%) had more observed rSNPs than expected; thus
ASE seems to nearly always be genetic rather than driven by genotype-
independent allelic epigenetic effects. rSNP signals are widespread and
robust also outside eQTL genes (Supplementary Table 6 and Supplemen-
tary Fig. 35), indicating potential to capture novel effects. Variants that
are both eQTLs and rSNPs show higher enrichment in functional anno-
tations (Fig. 3c and Supplementary Fig. 36), suggesting that integra-
ted analysis may improve resolution to find causal regulatory variants.
Altogether, we show evidence that ASE effects are mostly rare and nearly
always genetic, and ASE-based analyses may complement eQTL ana-
lysis in identification of especially low-frequency regulatory variants
in future studies.

Although QTL and prSNP analyses aim at identifying previously
unknown regulatory variants, we can also quantify functional effects
of predicted loss-of-function variants27. Our RNA-seq data captures
839 premature stop codon and 849 splice-site variants, with the much
higher number than in previous studies enabling proper quantification
of their transcriptome effects. As expected, premature stop variants
often show loss of the variant allele (Supplementary Fig. 37), indicating
nonsense-mediated decay28 (NMD) as in previous studies27,29. Variants
close to the end of the transcript seem to escape NMD as predicted28.
However, of the variants predicted to trigger NMD, in 68% (54% of
rare variants with minor allele frequency , 1%) the ASE results do not
support this (Fig. 4a), suggesting currently unknown mechanisms of
NMD escape.

Finally, we modelled how genetic variants affect splicing affinity in
the entire splicing motif rather than only the canonical splice site, which
is the first comprehensive set of such predictions genome-wide (P.G.F.
et al., manuscript submitted). Non-reference alleles have a lower splic-
ing affinity on average (P , 2.2 3 10216; Supplementary Fig. 38). For
the 10% of these variants predicted to destroy the motif, individuals
carrying two motif-destroying alleles have 29% lower median inclusion
rates of the affected exon (P , 2.2 3 10216; Fig. 4b), indicating that our
RNA-seq data are consistent with predictions of splicing effects.

Conclusions
By integrated analysis of RNA and DNA sequencing data we were able
to obtain a unique view to variation of the transcriptome and its genetic
causes, moving beyond eQTL catalogues to a high-resolution view of
genetic regulatory variants. We deconvoluted the effect of gene expres-
sion and transcript structure in population differences of the transcrip-
tome, in QTLs, and in allele-specific effects, and show that these two
dimensions of transcript variation appear equally common but largely
independent. Genetic regulatory variation is the rule rather than the
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Figure 3 | Allele-specific effects on expression and transcript structure.
a, Sharing of allele-specific expression (ASE) and transcript structure (ASTS)
signals: the distribution of ASTS P value of the sites with significant (P , 0.005)
ASE in the same individual, and vice versa. The ASE P-values are calculated from
sites sampled to exactly 30 reads. The numbers denote the P1 (1 – Storey’s P0)
statistic measuring the enrichment of low P values. b, Frequency of significant
ASE event in the population (x axis) and their effect size

( | 0.5 – ref/total | ), calculated per ASE SNP. Only ASE SNPs with $20
heterozygote individuals with $30 reads were included, and the estimates were
corrected for coverage bias and false positives by sampling and permutations.
c, Enrichment of variants in regulatory annotations relative to a matched null
distribution for the most significant eQTL variants, and for the subset of these
that are also rSNPs. Categories with highest amount of data are shown
(see Supplementary Fig. 36 for all categories, see also Fig. 2a).
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exception in the genome with widespread allelic heterogeneity, and is
the major determinant of allelic expression. For the first time, we were
able to predict large numbers of causal regulatory variants, and thus
provide a detailed view into cellular mechanisms of regulatory and loss-
of-function variation, which is essential for future functional predic-
tion of variants discovered in personal genomes.

A subset of this functional variation at the cellular level will also
have effects on higher-level traits. We demonstrate how eQTL data
can be used to pinpoint putative causal GWAS variants of individual
loci, which is important as a new model of how integration of cellular
phenotypes and genome sequencing data can uncover both causal
variants and biological mechanisms underlying diseases. The land-
scape of regulatory variation in this study adds a functional dimension
to the 1000 Genomes Project data, which is used in effectively all disease
studies, and together they form an important joint reference data set of
variation and function of the human genome. Ultimately, this study
illustrates the power of combining genome sequence analysis with a
high-depth functional readout such as the transcriptome.

METHODS SUMMARY
Total RNA was extracted from Epstein–Barr-virus-transformed lymphoblastoid
cell line pellets using TRIzol reagent (Ambion), and mRNA and small RNA sequen-
cing of 465 unique individuals were performed on the Illumina HiSeq2000 plat-
form, with paired-end 75-bp mRNA-seq and single-end 36-bp small-RNA-seq.
Five samples were sequenced in replicate in each of the seven sequencing laborato-
ries. The mRNA and small RNA reads were mapped with GEM30 and miraligner31,
respectively, with an average of 48.9 million mRNA-seq reads and 1.2 million miRNA
reads per sample after quality control. Numerous transcript features were quan-
tified using Gencode v12 (ref. 32) and miRBase v18 (ref. 33) annotations: protein-
coding and lincRNA genes (16,084 detected in .50% of samples), transcripts (67,603;
with FluxCapacitor7), exons (146,498), annotated splice junctions (129,805; ana-
lysed in detail in P.G.F. et al., manuscript submitted), transcribed repetitive ele-
ments (47,409), and mature miRNAs (715). Data quality was assessed by sample
correlations and read and gene count distributions, and technical variation was
removed by PEER normalization34 for the QTL and miRNA–mRNA correlation
analyses (P.A.C.H. et al., manuscript submitted). The samples clustered uniformly
both before and after normalization. The genotype data was obtained from 1000
Genomes Project Phase 1 data set for 421 samples (803 average exome and 53

whole-genome read depth), and the remaining 41 samples were imputed from
Omni 2.5M SNP array data. Furthermore, we did functional reannotation for all
the 1000 Genomes Project variants using Gencode v12. QTL mapping was done
with linear regression, using genetic variants with .5% frequency in 1-megabase
window and normalized quantifications transformed to standard normal. Permu-
tations were used to adjust the false discovery rate to 5%. Full details are provided
in the Supplementary Methods.
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